[(Z)- γ-[(Diisopropylidene- α-D-mannopyranosyl)oxy]allyl]tributylstannane: A New Chiral Reagent for the Asymmetric α-Hydroxyallylation of Aldehydes

William R. Roush ${ }^{*}$ and Michael S. VanNieuwenhze ${ }^{1}$
Contribution from the Department of Chemistry. Indiana University, Bloomington, Indiana 47405

Received May 13, 1994°

Abstract

Reactions of $[(\boldsymbol{Z}) \cdot \gamma \cdot[$ diisopropylidene- $\alpha-D$-mannopyranosyl) oxy]allyl]tributylstannane (6) with several chiral and achiral aldehydes are described. This reagent was designed in anticipation that significant diastereofacial bias in reactions with aldehydes would be exerted by the mannosyl auxiliary as a consequence of the exo anomeric effect. In fact, chiral reagent 6 displays especially useful diastereoselectivity in $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$-promoted matched double asymmetric reactions with chiral aldehydes (S) $\mathbf{7}$ ($18: 1$ selectivity), $(R)-19$ ($\geq 20: 1$ selectivity), and (R)-26 ($\geq 20: 1$ selectivity). Reagent 6 also gives good to excellent selectivity in mismatched double asymmetric reactions with $(R) .7$ ($16: 1$ selectivity), (S)-19 ($5: 1$ selectivity), (S)-20 ($7: 1$ selectivity), but with (S)-26 the mismatched double diastereoselectivity falls to 2:1. Reagent 6 also participates in MgBr_{2}-promoted reactions with α-alkoxy aldehydes (e.g., 19), although it proved incapable of overriding the intrinsic diastereofacial bias of the MgBr_{2}-complexed aldehyde. In all cases, it appears that the aldehyde-Lewis acid complexes approach the allylstannane unit of $\mathbf{6}$ on the side opposite to the pyran C-O bond with the vinyl ether $\mathrm{C}-\mathrm{O}$ bond oriented anti to the pyranoside $\mathrm{C}(1)-\mathrm{C}(2)$ bond, as dictated by the exo anomeric effect. However, reactions of 6 with α-(benzyloxy)acetaldehyde (45) demonstrate that the enantioselectivity of the reagent is attenuated by the tendency of reactions to occur via transition states with the enol ether either in the s-trans (e.g., 53,56) or the less stable s-cis rotamer (e.g., 54, 57), which exhibit opposite enantiofacial selectivities. It is suggested that double asymmetric reactions involving 6 display synthetically useful levels of enantioselectivity because the chiral aldehydes are able to discriminate between the s-cis/s-trans rotamer pool such that the matched pair double asymmetric reactions proceed almost exclusively via transition states with s-trans enol ether rotamers. Pathways involving s-cis enol ether rotamers (cf., 32, 43) become significant in mismatched double asymmetric reactions of aldehydes with very large intrinsic diastereofacial preferences, as in the reactions of 6 with $(S)-26-\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and (R)-19- MgBr_{2}.

The stereoselective synthesis of carbohydrates and other polyoxygenated materials from acyclic precursors is a problem of considerable interest. ${ }^{2}$ Procedures that enable syn or anti 1,2diol units to be generated in concert with a $\mathrm{C}-\mathrm{C}$ bond-forming event are particularly attractive, especially if the method is highly stereoselective. Among several different strategies that have been described, the α-alkoxyallylation of aldehydes via reactions with (γ-alkoxyallyl)metal reagents has received considerable attention. ${ }^{3-5}$ Particularly noteworthy are the contributions of Brown, ${ }^{56}$ Marshall, ${ }^{5, d}$ and Yamamoto ${ }^{5 e}$ who have developed highly enantioselective procedures for the synthesis of syn diol monoethers 4 via the reactions of aldehydes with chiral ((Z) - γ-alkoxyallyl)boranes and ($(\boldsymbol{Z})-\gamma$-alkoxyallyl) stannanes, respectively. We, ${ }^{\text {Gaband }}$ subsequently Barrett, ${ }^{6 c}$ developed a procedure for the enantioselective synthesis of anti-1,2-diols $3(\mathrm{R}=\mathrm{H})$ via the reactions of aldehydes with chiral (E)- γ-(alkoxydimethylsilyl)oxy)allylboron reagents, the silyl group serving as a hydroxyl surrogate. ${ }^{7}$

[^0]

We report herein an alternative strategy for the stereoselective synthesis of syn 1,2-diol monoethers 4 via the reactions of chiral aldehydes and the new allylstannane reagent 6 that incorporates a mannosyl unit as a chiral auxiliary. ${ }^{8}$ This reagent is easily prepared from allyl 2,3:4,6-di- O-isopropylidene- α-D-mannopyranoside 5^{9} by metalation with $\mathrm{n}-\mathrm{BuLi}$ in THF-HMPA at -78 ${ }^{\circ} \mathrm{C}$ followed by treating the allyl anion with $\mathrm{Bu}_{3} \mathrm{SnCl}(95 \%$
(4) γ-Alkoxyallylboron reagents: (a) Hoffmann, R. W.; Kemper. B. Tetrahedron Lett. 1980, 4883. (b) Wuts, P. G. M.; Bigelow, S. S. J. Org. Chem. 1982, 47, 2498. (c) Hoffmann, R. W.; Kemper, B.; Metternich, R.; Lehmeier, T. Liebigs Ann. Chem. 1985, 2246. (d) Roush, W. R.; Lesur, B. M.; Harris, D. J. Tetrahedron Lett. 1983, 24, 2227. Roush, W. R.; Michaelides, M. R.; Tai, D. F.; Lesur, B. M.; Chong, W. K. M.; Harris, D. J. J. Am. Chem. Soc. 1989, 111, 2984. (e) Roush, W. R.; Michaelides, M. R. Tetrahedron Lett. 1986, 27, 3353. (f) Hoffmann, R. W.; Metternich, R.; Lanz, J. W. Liebigs Ann. Chem. 1987, 881. (g) (γ-Alkoxyallyl)aluminum reagents: Koreeda, M.; Tanaka, Y. J. Chem. Soc., Chem. Commun. 1982, 845. (h) Yamaguchi, M.; Mukaiyama, T. Chem. Lett. 1982, 237. (i) γ-Alkoxyallyltin reagents: Keck, G. E.; Abbott, D. E.; Wiley, M. R. Tetrahedron Lett. 1987, 28, 139. (j) Koreeda, M.; Tanaka, Y. Ibid. 1987, 28, 143. (k) Other methods involving allylmetal reagents: Yamaguchi, M.; Mukaiyama, T. Chem. Lett. 1979, 1279; 1981, 1005. (1) Yamamoto, Y.; Saito, S.; Maruyama, K. J. Organomet. Chem. 1985, 292, 311 . (m) Tamao, K.; Nakajo, E.; Ito, Y. J. Org. Chem. 1987, 52, 957 . (n) Yamada, J.; Abe, H.; Yamamoto, Y. J. Am. Chem. Soc. 1990, 112, 6118.
yield). ${ }^{\text {iij }}$ While our studies were in progress, a chiral, carbo-hydrate-derived [γ-(tetrahydropyranyloxy)allyl] stannane, with the allylstannane linked to the auxiliary via $\mathrm{C}(2)$ rather than $\mathrm{C}(1)$ as in $\mathbf{6}$, was reported by Yamamoto and co-workers. ${ }^{\text {se }}$

Design Criteria. Chiral reagent 6 was designed in anticipation that significant diastereofacial bias would be exerted by the mannosyl auxiliary as a consequence of the exo anomeric effect. ${ }^{10}$ This effect, which provides a basis for rationalization of the conformational preference of glycosidic bonds, has been attributed to the minimization of nonbonded interactions and the overlap of a nonbonding lone pair of electrons on the aglycon oxygen and the pyran $\sigma^{*} \mathrm{C}-\mathrm{O}$ bond. However, C -disaccharides preferentially adopt similar conformations, suggesting that the conformational preferences of glycosides may be largely steric rather than stereoelectronic in nature. ${ }^{11}$ For glycosides with sp 3-hybridized ether linkages, the preferred conformation about the glycosidic bond is almost always one in which the aglycon $\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}(1)$ bond is antiperiplanar to the pyran $\mathrm{C}(1)-\mathrm{C}(2)$ bond, and consequently the aglycon $\mathrm{C}-\mathrm{O}$ bond is synclinal to the anomeric H and the pyran oxygen. Data summarized by Deslongchamps indicates that the anti $\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ conformation of an axial glycoside is stabilized by up to $1.9 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to the next best conformation. ${ }^{10 \mathrm{a}}$ For glycosides like 6 with sp^{2}-hybridized vinyl ether linkages, ${ }^{12 a b}$ the pyran $\mathrm{C}-\mathrm{O}$ bond is expected to be essentially perpendicular to the plane of the enol ether unit.

Assuming that a conformation resembling the one depicted for 6 is adopted in the transition state for reactions with aldehydes, it follows that a Lewis acid complexed aldehyde should approach the si face of the enol ether since the pyran-aglycon $\mathrm{O}-\mathrm{C}(1)-$ $\mathrm{C}(2)$ unit is a rather flat, unhindered surface (as long as the auxiliary has the $\mathrm{C}(2)$-manno configuration). Approach of the electrophile to the opposite (re) face is expected to lead to the development of significant nonbonded interactions between the electrophile and the pyran $\mathrm{C}-\mathrm{O}$ unit. Finally, it should be noted

[^1]that the exo-anomeric effect has previously been invoked to explain the diastereoselectivity of Diels-Alder reactions of (E)-3-[(trimethylsilyl)oxy]buta-1,3-dienyl- β-glucopyranoside. ${ }^{12 a}$ Several other stereoselective reactions of glycosyl vinyl ethers can be interpreted similarly. ${ }^{8,12}$
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-Catalyzed Double Asymmetric Reactions with β-Alkoxy- α-methylpropionaldehyde 7. Double asymmetric reactions of 6 with both enantiomers of β-alkoxy- α-methylpropionaldehyde 7 were examined as an initial test of this strategy. ${ }^{13}$ Thus, the reaction of 6 (1.5 equiv) and (S)-7 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -78 ${ }^{\circ} \mathrm{C}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (typically $2-4$ equiv) provided 8 as the major product of an 18:1 mixture. In contrast, the reaction of 6 and the enantiomeric chiral aldehyde (R)-7 proceeded with completely reversed diastereoselectivity and provided 9 as the major component of a $16: 1$ mixture. Keck has previously shown that the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalyzed reactions of 7 with (E) - or (Z) crotylstannanes generally favor the all syn diastereomer corresponding to $8 .{ }^{14}$ Therefore, we conclude that the enantioselectivity of chiral allylstannane 6 is sufficient to completely overcome the intrinsic diastereofacial bias of $(R)-7$ in the mismatched double asymmetric reaction that provides 9 as the major product.

The stereostructures of 8 and 9 were assigned following conversion to triacetates $\mathbf{1 0}$ and 11. A reference sample of $\mathbf{1 1}$ was prepared via the chelate-controlled reaction of $(R)-12$ and (γ-alkoxyallyl)stannane $13^{4 i}$ followed by standard functional group manipulations of the product 14 ((i) $\mathrm{Na}, \mathrm{NH}_{3}$; (ii) TBAF, THF; (iii) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine)). Reference samples of triacetates 15 and 16 were prepared from the corresponding triol mono-TBS ethers deriving from our earlier studies. ${ }^{62, b}$ Triacetate 10 deriving from 8 is a diastereomer of 11,15 , and 16 and, therefore, is the fourth isomer in this series.

The stereochemical outcome of the matched double asymmetric reaction of 6 and (S)-7 can be rationalized by invoking either transition state $\mathbf{1 7}$ synclinal or $\mathbf{1 7}$ anti. In both cases the aldehyde approaches the si face of the allylstannane and adopts the usually preferred Felkin rotamer with the methyl group eclipsing the carbonyl and the TBSOCH_{2} - group positioned anti to the developing $\mathrm{C}-\mathrm{C}$ bond. ${ }^{15} \mathrm{It}$ is also assumed that the BF_{3}-aldehyde

[^2]
complex has the trans geometry. ${ }^{16}$ Although anti relationships between the allylstannane and Lewis acid complexed aldehyde are often invoked in reactions of this type, ${ }^{2 b d, 17}$ evidence has been presented that suggests that synclinal transition states (e.g., 17 syncllinal) may be favored in some instances. ${ }^{18,19}$ Assuming that the aldehyde and allylstannane π systems occupy nonparallel planes in the transition state, ${ }^{3 \mathrm{c}, 20}$ then $\mathbf{1 7}_{\text {synclinal }}$ should be the lowest energy transition structure since interactions between the mannosyloxy auxiliary and the substituents on the chiral aldehyde are minimized.

By similar arguments we conclude that transition state 18 symelimal accounts for the formation of 9 as the major product of the mismatched double asymmetric reaction of 6 and $(R)-7$. The aldehyde adopts an "anti-Felkin" rotamer in this transition structure, with the larger TBSOCH_{2-} group eclipsing the carbonyl. Presumably the chiral reagent 6 is able to dominate the outcome of this reaction since the intrinsic diastereofacial selectivity of 7 is not overwhelmingly large. ${ }^{14}$
Double Asymmetric Reactions of 6 and α-Alkoxy Aldehydes 19 and 26. We explored the double asymmetric reactions of 6 with two additional chiral aldehydes in order to probe the limits of the enantioselectivity of the new chiral reagent 6. The $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-promoted matched double asymmetric reactions of 6 with chiral α-alkoxy aldehydes (R)-1921 and (R)-26 ${ }^{5 \mathrm{~d}}$ provided 21 and 27 as the only observed diastereomers, presumably via synclinal transition state 30 (an anti transition state analogous to $17_{\text {anti }}$ is also possible, vide supra). As in the previously described series of reactions with 7, the diastereoselectivity is reversed in

[^3]
the mismatched double asymmetric reactions involving (S)-19 and $(S)-26$. The reaction of 6 and $(S)-19$ provided the all syn diastereomer 22 as the major component of a $5: 1$ mixture. Selectivity in the mismatched reaction was improved to $7: 1$ by using the TBS-protected lactaldehyde derivative (S)-2021c as the substrate.

The major products of the mismatched double asymmetric reactions of (S)-19 and (S)-20 presumably arise via synclinal transition state 31 (although an anti transition state cannot be ruled out rigorously, vide supra) in which the aldehyde adopts an anti-Felkin rotamer with the α-alkoxy group eclipsing the Lewis acid coordinated carbonyl group. These examples provide additional evidence of the enantioselectivity of the chiral reagent 6, since α-alkoxy aldehyde. BF_{3} complexes generally exhibit a significant preference to react with achiral allylstannanes by way of Felkin transition states. ${ }^{22}$

However, mismatched double diastereoselectivity was not as great in the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-promoted reaction of 6 and (S)-26, which provided a $2: 1$ mixture of 28 and 29. This result implies that the intrinsic diastereofacial preference of $\mathbf{2 6}$ is considerably greater than that of $\mathbf{7 , 1 9}$, and 20. The stereochemistry of the minor product 29 suggests that the reaction may proceed by way of transition state 32 in which the enol ether unit of 6 adopts the more hindered, less stable ${ }^{23,24} \mathrm{~s}$-cis conformation and the aldehyde reacts by way of the usually favored Felkin-Anh rotamer. Thus, in this case, the chiral reagent is only marginally capable of overriding the intrinsic diastereofacial preference of $(S)-19$. The energy cost for reaction by way of an anti-Felkin carbonyl rotamer (as in 31) apparently is great enough to allow a competitive reaction to proceed by way of transition state 32 in which the aldehyde adopts the normal Felkin rotamer at the expense of the chiral enol ether unit of 6 that adopts an unfavorable conformation.

The stereostructures of 21-24 deriving from O-benzyllactaldehyde 19 were assigned as follows. Hydrolysis (1 N HCl, THF) of the all syn diastereomer 22 provided 33 which proved to be identical with a sample prepared via the chelate-controlled
(22) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$-promoted additions of allylstannanes to α-(tert-butyldim-ethylsiloxy)-substituted aldehydes generally proceed with excellent FelkinAnh diastereoselectivity (ref 14).
(23) (a) Charlton, J. L.; Plourde, G. L.; Penner, G. H. Can. J. Chem. 1989, 67, 1010. (b) Bond, D.; Schleyer, P. v. R. J. Org. Chem. 1990, 55, 1003.
(24) For other diastereoselective transformations of chiral enol ethers: (a) Posner, G. H.; Kinter, C. M. J. Org. Chem. 1990, 55, 3967 and references cited therein. (b) Prapansiri, V.; Thornton, E. R. Tetrahedron Lett. 1991, 32, 3147.

($\mathrm{MgBr}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-23^{\circ} \mathrm{C}$) reaction of (S) - $\mathbf{1 2}$ and (γ-alkoxyallyl)stannane $13^{4 i}$ followed by desilylation ($\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}$). Reference samples of the 3,4-trans diastereomers 34 and 35 were available from previous studies in our laboratory. ${ }^{6, b}$ The stereostructure of 21 was established by hydrolysis to the fourth diastereomer in this series, namely 36 , the spectroscopic properties of which were clearly distinct from those of 33-35. The stereostructure of 23, the minor product of the mismatched double asymmetric reaction of $(S)-19$ and 6 , was verified by hydrolysis to the enantiomer of 36. Finally, the stereostructure of 24 was assigned by desilylation and benzylation which provided diether 37 , which proved identical to the benzylation product of 22.

The stereochemistry of 27 , the sole product of the matched double asymmetric reaction of 6 and (R)-26, was assigned following conversion to tetraacetate 38 (i) $\mathrm{O}_{3}, \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78^{\circ} \mathrm{C}, \mathrm{Me}_{2} \mathrm{~S}$; then NaBH_{4}; (ii) $0.5 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}$; (iii) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine). A reference sample of 38 was prepared by a sequence involving the diastereoselective ($>10: 1$) osymlation of enoate 39 ((iv) OsO_{4} (cat.), NMO; (v) TBSOTf, lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vi) DIBAL-H, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; (vii) TBAF, THF; (viii) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine). ${ }^{25}$ This process is expected to provide the 3,4 -anti stereochemical relationship in 38.

Diastereomer 28, the major product of the mismatched double asymmetric reaction of 6 and (S)-26, was assigned the all syn

[^4] 3943 and 3947. (b) Stork, G.; Kahn, M. Tetrahedron Lett. 1983, 24, 3951.

(i) $\mathrm{O}_{3}, \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; $\mathrm{Me}_{2} \mathrm{~S}$; then NaBH_{4}; (ii) 0.5 N HCl , THF; (iii) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine; (IV) OsO_{4} (cat.), NMO ; (v) TBSOTf, lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vi) DIBAL-H, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; (vii) TBAF, THF; (viii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{OMAP}$, pyridine
stereochemistry since it was subsequently obtained as the near exclusive product of the $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalyzed reaction of 6 and (S)-26 (vide infra). The identity of the minor diastereomer 29 was established by hydrolysis of the mannosyl auxiliary and TBDMS ether followed by peracetylation to give triacetate 40 ((i) 1 N HCl , THF; (ii) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine), which proved to be the enantiomer of the triacetate similarly prepared from 27.

(i) $1 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}$; (ii) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine

Chelate-Controlled Reactions of 6 and α-Alkoxy Aldehyde 19. While excellent results were obtained in the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-promoted double asymmetric reactions of 6 and aldehydes (S)-7 (matched), (R)-7 (mismatched), (R)-19 (matched), (S)-19/20 (mismatched), and $(R)-26$ (matched), the enantioselectivity of 6 was insufficient to achieve good selectivity in the mismatched double asymmetric reaction with $(S)-26$. Because the major product of this reaction, 28, has the syn,syn stereochemistry that should be easily prepared by using chelate-controlled conditions, ${ }^{4,26}$ we decided to explore the reactions 6 with 19 and 26 in the presence of MgBr_{2} in order to achieve more highly stereoselective access to 22 and 28 . As noted already in the preceding section, the reaction of 6 and (S)-26 provided the all-syn diastereomer 28 with excellent selectivity.

[^5]Results of the MgBr_{2}-catalyzed double asymmetric reaction of 6 with $(R)-19$ and $(S)-19$ are summarized below. Surprisingly, both reactions provided all syn diastereomers with excellent diastereoselectivity. Thus, the (presumably) matched double

asymmetric reaction of 6 and $(S)-19$ in the presence of MgBr_{2} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2},-23^{\circ} \mathrm{C}\right)$ provided 22 with $15: 1$ stereoselectivity, while the (presumably) mismatched MgBr_{2}-promoted reaction of 6 and $(R)-19$ provided 41 with $>30: 1$ selectivity. The stereochemistry of 41 was assigned by hydrolysis of the mannosyl auxiliary to give the enantiomer of syn,syn-diol 33.
The reaction of $(R)-19$ and 6 is expected to be a matched pair since the anti transition state 42 permits the allylstannane to adopt the usually preferred s-trans enol ether rotamer ${ }^{23}$ and to approach the MgBr_{2} chelated aldehyde from the less hindered face. An anti arrangement between the π systems of the two reactants should be favored in this instance since this permits the smallest substituent, H , of the allylstannane 6 to occupy a position over the five-membered chelate close to the sterically demanding MgBr_{2} group. The results obtained in the mismatched double asymmetric reaction between $(R)-19$ and 6 imply that the diastereofacial preference of the five-membered chelate is significantly greater than the enantioselectivity of the chiral reagent 6. The stereochemistry of the major product, 41 , indicates that this reaction proceeds either by way of transition state 43 with the less stable s-cis enol ether rotamer or via transition structure 44 in which the Lewis acid complexed aldehyde approached the chiral allylstannane from the more hindered side, cis to the pyran $\mathrm{C}-\mathrm{O}$ unit. We assume that 44 is less important than $\mathbf{4 3}$, since the (R)-19. $\mathbf{M g B r}_{2}$ complex is forced to approach the enol ether from the more hindered face, with the development of nonbonded interactions between the pyran and carbonyl oxygen atoms. That one or both of these transition structures are utilized establishes that the intrinsic diastereofacial preference of 6 (as indicated by the magnitude of the destabilizing interactions highlighted in $43 / 44$) is less than the diastereofacial preference
of the $19 \cdot \mathbf{M g B r}_{2}$ chelate (i.e., the preference of the nucleophile to add to the chelate on the side opposite the lactaldehyde methyl group).
$\mathbf{B F}_{3} \cdot \mathbf{E t}_{\mathbf{2}} \mathbf{O}$-, $\mathbf{M g B r}_{\mathbf{2}}{ }^{-}$, and $\mathbf{Z n I}_{2}$-Catalyzed Reactions of $\mathbf{6}$ with (Benzyloxy)acetaldehyde. Reactions with (benzyloxy)acetaldehyde (45) were performed in order to assess the intrinsic diastereofacial selectivity of 6 in the absence of the influence of stereogenic centers in the aldehyde component. Surprisingly, the results summarized below show that the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}-, \mathrm{MgBr}_{2}{ }^{-}$, and ZnI_{2}-catalyzed reactions are considerably less selective than the reactions of 6 with 7 or 19 under the same conditions. Because the stereoselectivity of these reactions was poor, efforts were not made to optimize the yields of isolated products.

The stereochemistry of 46 was assigned following hydrolysis of the mannosyl auxiliary and ozonolysis of the vinyl group. Triol $(+)-50$ so prepared proved to be the enantiomer of $(-)-50$ obtained by hydrolysis of epoxy alcohol $\mathbf{5 1}^{27}$ via a base-catalyzed epoxide migration sequence. ${ }^{27,28}$ Homoallyl alcohol 47 was similarly shown to be a syn diol by acidic hydrolysis of a 1.2:1 mixture of 46 and 47 (deriving from the MgBr_{2}-catalyzed reaction of 6 and 45) that gave a single (essentially racemic) diol 52.

The stereochemistry of the major product 46 deriving from the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalyzed reaction of 45 and 6 is consistent with a pathway involving transition structure $53_{\text {synclinald }}$, by analogy to the reaction of 6 and (S) - 7 that proceeds via $17_{\text {syaclinad }}$. The minor syn diastereomer 47 probably arises via transition structure 54,

[^6]in which the enol ether unit of 6 adopts the less stables-cis rotamer. Transition structure 55 is also a possible precursor to 47 , but we consider 55 to be less important than 54 owing to the fact that the Lewis acid complexed aldehyde approaches the allylstannane from the more hindered side.
It is curious that the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalyzed reaction of 6 and (benzyloxy)acetaldehyde 45 is significantly less selective than the mismatched double asymmetric reaction of 6 and $(R)-7$ and is comparable to the level of selectivity seen in the mismatched double asymmetric reactions of 6 and $(S)-19 / 20$, even though the diastereofacial selectivity preference of $19 / 20$ is reasonably large. ${ }^{22}$ Because the selectivity of the reaction of 6 with 45$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ is only moderate (vide supra), application of Masamune's rule of multiplicativity to these reactions would suggest that the selectivity of the mismatched double asymmetric reactions should be poor. ${ }^{13}$ That the mismatched reactions of 6 with 7 and 19/20 give good to excellent selectivity implies that the centers of chirality in the aldehyde substrates help to disfavor transition states (e.g., 54 and/or 55) that contribute significantly in reactions with achiral aldehydes like 45. That is, the chiral aldehydes seem able to select among a number of available transition states in such a way that the mismatched double asymmetric reactions are significantly more selective than should be possible based on the reactions of 6 with achiral substrates.

This point is demonstrated more dramatically in the $\mathrm{MgBr}_{2^{-}}$ and ZnCl_{2}-catalyzed reactions of $\mathbf{4 5}$ and 6 which are virtually nonselective among the $\mathbf{4 6 / 4 7}$ syn diastereomer series. This indicates that the diastereomeric transition states 56 (leading to 46) and 57 (leading to 47) are virtually equivalent energetically. ${ }^{29}$ Recall, however, that the reactions of 6 with 19 exhibit excellent diastereofacial selectivity. In this case, it is very clear that the stereocenter of 19 exhibits a significant effect on the reactions, since placement of an (R)-lactaldehyde stereoisomer in transition structure 42 (equivalent to 56) or of (S)-lactaldehyde in 43 (equivalent to 57) would force the allylstannane to approach the aldehyde from the more hindered face of the MgBr_{2} chelate. Clearly, therefore, the chirality of 19 is sufficient to bias the s -cis $/ \mathrm{s}$-trans enol ether rotamer population in the competing reaction transition states.

Summary. We have demonstrated that the chiral (γ-alkoxyallyl)stannane 6 displays useful diastereoselectivity especially in BF_{3}. OEt_{2}-promoted double asymmetric reactions with chiral aldehydes (S)-7, (R)-19, and (R)-26. The origin of asymmetry is believed to derive from conformational preferences of the (Z) [(γ-mannosyl)oxy]vinyl ether dictated by the exo a nomeric effect.
(29) A transition state analogous to 44 is also a potential precursor to 47.

In all cases, it appears that the Lewis acid complexed aldehydes approach the allylstannane unit on the side opposite to the pyran $\mathrm{C}-\mathrm{O}$ bond when the vinyl ether $\mathrm{C}-\mathrm{O}$ bond is oriented anti to the pyranoside $C(1)-C(2)$ bond. However, reactions of chiral reagent 6 with α-(benzyloxy) acetaldehyde (45) demonstrate that the enantioselectivity of 6 is attenuated by the tendency of reactions to occur via transition states with the enol ether in either the s -trans (e.g., 53, 56) or the less stable ${ }^{23} \mathrm{~s}$-cis rotamer (e.g., 54, 57), which have opposite enantiofacial selectivities. Evidently, double asymmetric reactions involving 6 exhibit synthetically useful levels of enantioselectivity because the chiral aldehydes are able to discriminate between the s -cis $/ \mathrm{s}$-trans rotamer pool such that the matched pair double asymmetric reactions proceed almost exclusively via transition states with s-trans enol ether rotamers. Pathways involving s-cis enol ether rotamers (cf., 32, 43) become significant only in the mismatched double asymmetric reactions of aldehydes with very large intrinsic diastereofacial preferences (e.g., reactions of 6 with (S) $-26-\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and (R) -$19-\mathrm{MgBr}_{2}$).

Experimental Section

General. All reactions were conducted in oven-dried ($125^{\circ} \mathrm{C}$) or flamedried glassware under atmospheres of dry argon or nitrogen. All solvents were purified before use. Ether and THF were distilled from sodium benzophenone ketyl. Methylene chloride, toluene, and acetonitrile were distilled from CaH_{2}. Methanol was distilled from magnesium turnings.
${ }^{1} \mathrm{H}$ NMR spectra were measured at $\mathbf{3 0 0} \mathbf{~ M H z}$ on a Varian XL-300 instrument at 400 MHz on a Varian VNMR 400 instrument and 500 MHz on a Bruker AM500 instrument. Residual chloroform ($\delta 7.26$) was used as internal reference for spectra measured in CDCl_{3}. ${ }^{1} \mathrm{H}$ NMR spectra measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ were referenced against residual benzene (δ 7.16). ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100.6 or 125.8 MHz and were referenced with the $\delta 77.0$ resonance of CDCl_{3} or the $\delta 128.0$ resonance of $\mathrm{C}_{6} \mathrm{D}_{6}$. Infrared spectra were recorded on a Perkin-Elmer Model 1420 infrared spectrophotometer. FT-IR spectra were recorded on a Mattson Instruments 4020 Galaxy Series FT-IR spectrophotometer. Low- and high-resolution mass spectra were measured at 70 eV on a Kratos GC/ MS 80 RFA mass spectrometer at the Indiana University Mass Spectrometry Laboratory. Optical rotations were measured on a Rudolph Autopol III polarimeter using a 1 mL capacity quartz cell with a 10 cm path length. Elemental analyses were performed by Robertson Laboratories, Florham Park, N. J. or Galbraith Laboratories, Knoxville, TN.

Analytical thin-layer chromatography (TLC) was performed by using $2.5 \mathrm{~cm} \times 10 \mathrm{~cm}$ plates coated with a 0.25 mm thickness of silica gel containing PF 254 indicator (Analtech). Compounds were visualized by staining (and charring) of the TLC plates with a solution of ceric sulfate and ammonium molybdate in aqueous sulfuric acid or with a solution of o-vanillin in ethanol with acetic and sulfuricacid. Flash chromatography was performed as described by Still using Kieselgel 60 ($230-400$ mesh) or Kieselgel 60 ($70-230 \mathrm{mesh}$). ${ }^{30}$ Unless otherwise noted, all compounds purified by chromatography are sufficiently pure ($>95 \%$ by ${ }^{1} \mathrm{H}$ NMR analysis) for use in subsequent reactions.
(Z)-1-[(2,3:4,6-Di- O-isopropylidene- α-D-mannopyranosyl)oxy]-3-(tribu-tylstannyl)prop-1-ene (6). n-BuLi (2.6 M in hexanes, $8 \mathrm{~mL}, 20 \mathrm{mmol}$) was added dropwise to a vigorously stirred $-78^{\circ} \mathrm{C}$ solution of allyl ether $5^{9}(5 \mathrm{~g}, 16.6 \mathrm{mmol})$ in THF (30 mL). HMPA (3 mL) was added

[^7]immediately, and the resulting dark red solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . $\mathrm{Bu}_{3} \mathrm{SnCl}(4.95 \mathrm{~mL}, 18.3 \mathrm{mmol})$ was then added dropwise over $10 \mathrm{~min} .{ }^{4 i}$ The resulting solution was stirred for 15 min and then allowed to warm slowly to room temperature. The reaction mixture was diluted with hexanes (120 mL) and poured into a vigorously stirred solution of saturated $\mathrm{NH}_{4} \mathrm{Cl}(75 \mathrm{~mL})$. The organic layer was separated, washed repeatedly with saturated $\mathrm{LiCl}(3 \times 50 \mathrm{~mL})$, and then dried over $\mathrm{Na}_{2}-$ SO_{4}. The solution was filtered and concentrated in vacuo to give 6 (11.2 $\mathrm{g}, 95 \%$ yield) as a pale green oil that was sufficiently pure for use directly in reactions with aldehydes. Purification of large quantities of 6 was complicated by the acid lability of the enol ether. A small sample was purified by silica gel chromatography ($1: 1, \mathrm{Et}_{2} \mathrm{O}$:hexanes) for characterization purposes: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.01(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=5.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.0$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 6 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3$ $\mathrm{H}), 1.43(\mathrm{~m}, 12 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 137.51,109.45,109.01,99.69,98.38,76.17,75.65$, $73.18,62.71,62.38,29.60,29.60,29.60,29.33,28.40,27.78,27.78,27.78$, $26.35,18.70,13.97,13.97,13.97,9.73,9.73,9.73,6.34$; IR (neat) 2990 , $2975,2960,2935,1650,1455,1375,1215,1085,1070,860 \mathrm{~cm}^{-1}$; LRMS m / e (relative intensity) 533 (24), 347 (19), 291 (100), 235 (53), 179 (32); HRMS for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{Sn}$ [M M^{+}- Bu] calcd 533.1931, found 533.1925.
(2S,3R,4R)-1-[(tert-Butyldimethylsilyl)oxy]-4-[(2,3:4,6-di-O-isopro-pylidene- α-D-mannopyranosyl)oxy]-2-methylhex-5-en-3-ol (8). $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($171 \mu \mathrm{~L}, 1.4 \mathrm{mmol})^{31}$ was added dropwise to a $-78^{\circ} \mathrm{C}$ solution of aldehyde (S) -7 ($94 \mathrm{mg}, 0.46 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$. The resulting solution was stirred for 10 min , and then a solution of $6(329 \mathrm{mg}, 0.56 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added dropwise via cannula. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3.5 h , and then a solution of t - BuOK (465 mg , 4.1 mmol) in MeOH (4.0 mL) was added. ${ }^{32}$ The mixture was allowed to warm to room temperature, diluted with EtOAc (30 mL), and washed with saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and brine (20 mL). The organic extract was dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification of the crude product by silica gel chromatography ($40 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) afforded 8 ($163 \mathrm{mg}, 70 \%$ yield) as a clear oil as the major component of the $18: 1$ mixture: $[\alpha]^{25}{ }_{\mathrm{D}}=+28.7^{\circ}$ ($c=1.8$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 5.61$ (ddd, $J=17.2,10.2,8.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.51 (s, 1 H), 5.09 (ddd, $J=17.2,1.6,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.89 (dd, $J=10.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33\left(\mathrm{~A}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=6.5, J_{\mathrm{AX}}=7.5 \mathrm{~Hz}, 1$ $\mathrm{H}), 4.25\left(\mathrm{~B}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=6.5 \mathrm{~Hz}, J_{\mathrm{BX}}=0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.04-3.79$ (complex set of overlapping signals, 5 H), 3.59 (A of $\mathrm{ABX}, J_{\mathrm{AB}}=9.7$ $\left.\mathrm{Hz}, J_{\mathrm{AX}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.48\left(\mathrm{~B}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=9.7 \mathrm{~Hz}, J_{\mathrm{BX}}=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{~s}$, broad, 1 H$), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H})$, $1.31(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 0.02 ($\mathrm{s}, 3 \mathrm{H}$), $0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 136.47$, $117.80,109.25,100.02,99.67,83.28,76.70,75.71,74.49,73.38,67.18$, $62.29,62.07,36.54,29.46,28.47,26.42,26.07,26.07,26.07,18.76,18.43$, 9.63, -5.36, -5.40; IR (CHCl ${ }_{3}$) 3589, 3482 (broad), 3010, 2955, 2931, $2858,1472,1384,1245,1220,1072,934,839 ;$ LRMS m / e (relative intensity) 271 (22), 243 (88), 201 (25), 185 (100), 143 (21), 127 (33), 111 (38), 85 (45), 69 (37); HRMS for $\mathrm{C}_{25} \mathrm{H}_{47} \mathrm{O}_{8} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd 503.3040, found 503.3067.
(2R,3R,4R)-1-[(tert-Butyldimethylsilyl)oxy]-4-[(2,3;4,6-di-O-isopro-pylidene- α-D-mannopyranosyl)oxy]-2-methylhex-5-en-3-ol (9). $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ $(123 \mu \mathrm{~L}, 1.0 \mathrm{mmol})^{31}$ was added dropwise to a $-78^{\circ} \mathrm{C}$ solution of $(R)-7$ ($50 \mathrm{mg}, 0.25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}$). The resulting mixture was stirred for 10 min , and then a solution of $6(295 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.0 mL) was added dropwise via cannula. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 12 h , and then a solution of t - BuOK ($337 \mathrm{mg}, 3.0$ mmol) in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added. ${ }^{32}$ The solution was allowed to warm to room temperature, diluted with EtOAc (30 mL), and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic extracts were dried over MgSO_{4} and concentrated in vacuo. Purification of the crude product by silica gel chromatography ($19: 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone) provided alcohol 9 (101 mg , 80% yield) as a clear oil as the major component of the $16: 1$ diastereomeric mixture: $[\alpha]^{25_{D}}=+15.4^{\circ}\left(c=0.7, \mathrm{CHC}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta 5.88$ (ddd, $J=17.5,10.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.51(\mathrm{~s}, 1 \mathrm{H}), 5.21$ (ddd, $J=$ $17.5,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.97 (ddd, $J=10.4,1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37 (A of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=7.8 \mathrm{~Hz}, J_{\mathrm{Ax}}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.29(\mathrm{~B}$ of $\mathrm{ABX}+$ overlapping

[^8]$\mathrm{t}, 2 \mathrm{H}$), 4.04-3.84 (complex set of overlapping signals, 3 H), 3.76 (B of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=10.0 \mathrm{~Hz}, J_{\mathrm{BX}}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.59(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.46(\mathrm{dd}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H})$, $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 137.10$, $117.10,109.27,99.66,99.64,81.88,78.02,76.77,75.75,73.36,65.74$, $62.41,62.08,36.69,29.42,28.44,26.37,26.00,26.00,26.00,18.70,18.32$, 14.97, -5.52, -5.52; IR (CHCl ${ }_{3}$) 3451 (broad), 2995, 2956, 2930, 2858, 1731, 1463, 1404, 1246, 1081, 933, $838 \mathrm{~cm}^{-1}$; LRMS m/e (relative intensity) 271 (27), 243 (78), 203 (55), 185 (100), 143 (20), 127 (34), 99 (21), 89 (48), 69 (34); HRMS for $\mathrm{C}_{25} \mathrm{H}_{47} \mathrm{O}_{8} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right.$] calcd 503.3040, found 503.3046.
(2R,3R,4R)-2-(Benzyloxy)-4-[(2,3:4,6-di- - -isopropylidene- α-D-man-nopyranosyl)oxy]-5-hexen-3-ol (21). $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(38 \mu \mathrm{~L}, 0.31 \mathrm{mmol})^{31}$ was added dropwise to a $-78^{\circ} \mathrm{C}$ solution of aldehyde $(R)-19(100 \mathrm{mg}$, 0.61 mmol) and 2,6-di-tert-butyl-4-methylpyridine ${ }^{33}$ ($14 \mathrm{mg}, 0.07 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The mixture was stirred for 10 min , then a solution of $6(383 \mathrm{mg}, 0.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added via cannula. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The mixture was then poured into a vigorously stirred solution of saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with EtOAc ($4 \times 15 \mathrm{~mL}$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by silica gel chromatography $\left(9: 1, \mathrm{CHCl}_{3}\right.$:acetone) to give 21 ($141 \mathrm{mg}, 52 \%$ yield) as a clear oil; no other diastereomers were detected by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{25} \mathrm{D}=+7.7^{\circ}\left(c=1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.19(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J$ $=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 4 \mathrm{H}), 4.19(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 2.28$ (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.29$ (s, 3 H), $1.18(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 139.50, 136.77, 128.58, 128.52, 128.15, 128.13, 127.89, 117.10, 109.25, 99.71, $99.71,79.57,77.02,76.80,75.78,75.32,73.40,70.58,62.48,62.16$, 29.43, 28.44, 26.46, 18.85, 15.02; IR (neat) 3490 (broad), 2990, 2970, 1450, 1380, 1365, 1075, 860; HRMS for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{H}^{+}\right.$] caled 465.2488, found 465.2512. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{8}$: $\mathrm{C}, 64.63 ; \mathrm{H}$, 7.81. Found: C, 64.31; H, 7.62.

In subsequent experiments, up to 30% of a triol was isolated resulting from hydrolysis of the $4^{\prime}, 6^{\prime}$-acetonide of the mannosyl unit of 21.
(2S,3R,4R)-2-(Benzyloxy)-4-[(2,3:4,6-di- 0 -isopropylidene- α-D-man-nopyranosyl)oxy]-5-hexen-3-ol (22). A solution of $6(1.6 \mathrm{~g}, 2.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added via cannula to a $-23^{\circ} \mathrm{C}$ solution of $(S)-19$ ($300 \mathrm{mg}, 1.8 \mathrm{mmol}$) and $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($517 \mathrm{mg}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (18 mL). The resulting solution was allowed to warm to room temperature and stirred for 90 min . The mixture was then diluted with saturated $\mathrm{NaHCO}_{3}(25 \mathrm{~mL}), 10 \% \mathrm{KF}$ solution (40 mL), and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and stirred vigorously for 1 h . The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the crude product by silica gel chromatography ($1: 1, \mathrm{Et}_{2} \mathrm{O}$:hexanes) provided 22 (523 mg , 65% yield) as a clear oil: $[\alpha]^{25} \mathrm{D}=+40.0\left(c=0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.14(\mathrm{~m}, 5 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.13$ (ddd, $J=17.5,1.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94 (ddd, $J=10.5,1.1,0.8 \mathrm{~Hz}, 1$ $\mathrm{H}), 4.37(\mathrm{~m}, 3 \mathrm{H}), 4.26(\mathrm{dd}, J=7.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=9.9,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$, $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 138.93, 136.60, 128.54, 128.54, 127.91, 127.91, 127.87, 117.18, 109.25, 99.67,99.54, 81.46, 77.41, 76.83, 75.78, $74.19,73.42,70.64,62.47,62.22,29.41,28.41,26.40,18.87,16.00$; IR (neat) 3480 (broad), 2990, 2965, 1450, 1380, 1365, 1215, 1065, 910 cm^{-1}; HRMS for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{H}^{+}\right.$] calcd 465.2488, found 465.2497. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{8}$: C, 64.63; H, 7.81. Found: C, $64.67 ; \mathrm{H}$, 7.82.

Adduct 22 was also prepared in 61% yield as the major component of a $5: 1$ (22:23) mixture from the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-promoted reaction of 6 and (S)-19 following the procedure described for the synthesis of 8 . Diastereomers 22 and 23 were separated by silica gel chromatography (9:1, CHCl_{3} :acetone): $R_{f} 0.50$ for $22, R_{f} 0.45$ for 23 ($1: 1 \mathrm{EtOAc}$:hexanes). Partial data for 23: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.15$ (m, 5 H), 5.91 (ddd, $J=17.5,10.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.33(\mathrm{~s}, 1 \mathrm{H}), 5.12$ (ddd, $J=17.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (dd, $J=10.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.35$ (A of $A B, 1 \mathrm{H}$), 4.17 (dd, 1 H), 4.12 (B of $\mathrm{AB}, 1 \mathrm{H}$), 4.00-3.87 (multiple
(33) 2,6-Di-tert-butyl-4-methylpyridine was added to minimize cleavage of the acetonide units prior to workup. We subsequently determined that a better protocol involved adding KO'Bu in MeOH before workup (see procedure for preparation of 8).
overlapping signals, 5 H$), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~d}, 1 \mathrm{H})$, $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$.
(2S,3R,4S,5R)-1-[(tert-Butyldimethylsilyl)oxy]-2,3-bis(benzyloxy)-5-[(2,3:4,6-di-O-isopropylidene- α-D-manno-pyranosyl)oxy]hept-6-en-4-ol (27). $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(119 \mu \mathrm{~L}, 0.96 \mathrm{mmol})^{31}$ was added dropwise to a $-78^{\circ} \mathrm{C}$ solution of $(R)-26^{\text {sd }}(100 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$. The resulting solution was stirred for 10 min , and then a solution of stannane $6(284$ $\mathrm{mg}, 0.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was added dropwise via cannula. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h , and then a mixture of $\mathrm{t}-\mathrm{BuOK}$ ($323 \mathrm{mg}, 2.9 \mathrm{mmol}$) in MeOH (3 mL) was added and the solution was allowed to warm to room temperature. The resulting mixture was diluted with EtOAc (50 mL) and washed with saturated NaHCO_{3} $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The organic solution was dried over MgSO_{4} and concentrated in vacuo. Purification of the crude product by silica gel chromatography (30% EtOAc in hexanes) provided 27 (125 $\mathrm{mg}, 73 \%$ yield) as a clear oil: $[\alpha]^{25} \mathrm{D}=16.8^{\circ}\left(c=0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~m}, 10 \mathrm{H}), 5.44$ (ddd, $J=17.3,10.4,8.0 \mathrm{~Hz}$, 1 H), 5.18 (ddd, $J=17.3,1.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (dd, $J=10.4,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.70\left(\mathrm{AB}, J_{\mathrm{AB}}=11.3 \mathrm{~Hz}, \Delta \nu=50.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.56$ $\left(\mathrm{AB}, J_{\mathrm{AB}}=11.3 \mathrm{~Hz}, \Delta \nu=30.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$), $4.20-4.11$ (m of overlapping signals, 3 H), $3.84(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.55$ (complex region of overlapping signals, 8 H), 1.54 (s, 3 H), $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, 0.89 (s, 9 H), $0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{HHz}, \mathrm{CDCl}_{3}$) $\delta 137.83$, 137.83, 136.43, 128.47, 128.47, 128.45, 128.45, 128.33, 128.33, 127.98, $127.93,127.93,127.86,117.26,109.33,99.58,98.93,80.39,79.01,76.50$, $76.13,74.94,74.08,73.11,72.77,72.62,61.98,61.53,61.49,29.03,28.16$, $26.17,25.83,25.83,25.83,18.76,18.13,-5.45,-5.49$; IR $\left(\mathrm{CHCl}_{3}\right) 3541$, $3010,2981,1454,1384,1244,1218,1084,839$; HRMS for $\mathrm{C}_{39} \mathrm{H}_{99} \mathrm{O}_{10} \mathrm{Si}$ [$\mathrm{M}+\mathrm{H}^{+}$] calcd 715.3877, found 715.3925 .
(2R,3S,4S,5R)-1-[(tert-Butyldimethylsilyl)oxy]-2,3-bis(benzyloxy)-5-[(2,3:4,6-di- O-isopropylidene- α-D-mannopyranosyl)oxy]hept-6-en-4-ol (28) and (2R,3S,4R,5S)-1-[(tert-Butyldimethylsilyl)oxy]-2,3-bis(benzyloxy)-5-[(2,3;4,6-di-O-isopropylidene- α-D-mannopyranosyl)oxy]hept-6-en-4ol (29). $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(119 \mu \mathrm{~L}, 0.96 \mathrm{mmol})^{31}$ was added dropwise to a -78 ${ }^{\circ} \mathrm{C}$ solution of $(S)-26^{5 d}(100 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$. The resulting solution was stirred for 10 min , and then a solution of $6(284$ $\mathrm{mg}, 0.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was added dropwise via cannula. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h , and then a solution of t - BuOK ($323 \mathrm{mg}, 2.9 \mathrm{mmol}$) in MeOH (3 mL) was added. The mixture was then diluted with EtOAc (50 mL) and extracted with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Purification of the crude product by silica gel chromatography ($30 \% \mathrm{EtOAc}$ in hexanes) provided a $2: 1$ mixture of 28 and 29 ($118 \mathrm{mg}, 69 \%$ combined yield).

Data for 28: $R_{f} 0.45$ (3:1 hexanes:EtOAc); $[\alpha]^{25}{ }_{\mathrm{D}}=+13.6^{\circ}(c=0.5$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.33-7.08(\mathrm{~m}, 10 \mathrm{H}$), 5.75 (ddd, $J=17.3,10.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.53 (s, 1 H), 5.05 (ddd, $J=17.3,1.5,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57\left(\mathrm{AB}, J_{\mathrm{AB}}=11.8 \mathrm{~Hz}\right.$, $\Delta \nu=53.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.50\left(\mathrm{AB}, J_{\mathrm{AB}}=12.9 \mathrm{~Hz}, \Delta \nu=105.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $4.35(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{t}, 1 \mathrm{H}), 4.04-3.74$ (complex set of overlapping signals, 9 H), 2.56 (broad d, 1 H), 1.53 (s, 3 H), 1.47 (s, 3 H), 1.31 (s , $3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.46,138.11,135.68,128.40,128.40,128.33$, 128.33, 127.97, 127.97, 127.83, 127.83, 127.81, 127.60, 118.65, 109.39, $99.61,98.99,81.25,80.43,76.42,76.04,74.89,73.54,72.91,72.65,72.38$, $62.59,61.57,61.46,29.03,28.17,26.15,25.89,25.89,25.89,18.75,18.23$, $-5.38,-5.40$; IR (CHCl_{3}) 3563 (broad), 3007, 2931, 2858, 1737, 1463, 1373, 1225, 1086, 937, $908,839 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{39} \mathrm{H}_{59} \mathrm{O}_{10} \mathrm{Si}[\mathrm{M}+$ H^{+}] calcd 715.3877 , found 715.3848. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{O}_{10} \mathrm{Si}$: C , 65.52; H, 8.17. Found: C, 65.39; H, 8.27.

Data for 29: $R_{f} 0.40$ (3:1 hexanes:EtOAc); $[\alpha]^{25}{ }_{\mathrm{D}}=+8.2^{\circ}(c=0.8$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.27(\mathrm{~m}, 10 \mathrm{H}$), 5.85 (ddd, $J=17.3,10.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.35 (dd, $J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.28 (dd, $J=17.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.71\left(\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, \Delta \nu=\right.$ $44.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{dd}, J=8.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (A of ABX, $\left.J_{\mathrm{AB}}=7.6 \mathrm{~Hz}, J_{\mathrm{AX}}=0.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.17\left(\mathrm{~B}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=7.6$ $\mathrm{Hz}, J_{\mathrm{BX}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86-3.67 (complex region of overlapping signals, 9 H), 3.18 (s, broad, 1 H), $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.08,138.07,133.89,128.45,128.45,128.38,128.38$, $128.18,128.18,127.89,127.69,127.62,127.62,120.78,109.34,99.62$, $94.47,79.18,77.20,76.75,76.38,74.79,73.44,73.20,72.75,72.68,62.11$, $61.93,61.93,29.00,28.14,26.16,25.87,25.87,25.87,18.78,18.16,-5.45$, -5.45; IR (CHCl_{3}) 3573, 3478 (broad), 2996, 2931, 2858, 1497, 1463, 1384, 1245, 1172, 1087, 940, $851 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{39} \mathrm{H}_{59} \mathrm{O}_{10} \mathrm{Si}[\mathrm{M}+$ H^{+}] calcd 715.3877, found 715.3872.
(2R,3S,4S,5R)-1-[(tert-Butyldimethylsilyl)oxy]-2,3-bis(benzyloxy)-5-[(2,3:4,6-di- O-isopropylidene- α-D-mannopyranosyl)oxy]hept-6-en-4ol (28). A solution of aldehyde (S)-26 ($50 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mu \mathrm{~L})$ was treated with $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}(62 \mathrm{mg}, 0.24 \mathrm{mmol}$). A solution of $6(85$ $\mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added and the resulting solution stirred at room temperature for 6 h . Saturated NaHCO_{3} solution (3 mL) was added, and the resulting mixture was extracted with EtOAc (2 $\times 20 \mathrm{~mL}$). The combined extracts were dried over MgSO_{4} and concentrated in vacuo. Purification of the crude product by silica gel chromatography ($3: 1$ hexanes:EtOAc) provided exclusively alcohol 20 ($55 \mathrm{mg}, 65 \%$ yield). This material was identical in all respects to the major product obtained in the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-mediated mismatched reaction of $(S)-26$ and 6 described in the preceding experimental procedure.
(2R,3S,4S)-2-(Benzyloxy)-4-[(2,3:4,6-di-O-isopropylidene- α-D-man-nopyranosyl)oxy]-5-hexen-3-ol (41). $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($519 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added to a $-23^{\circ} \mathrm{C}$ solution of $(R)-19(300 \mathrm{mg}, 1.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(19 \mathrm{~mL})$. This mixture was stirred for 15 min , and then a solution of 6 ($1.6 \mathrm{~g}, 2.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) was added dropwise via cannula. The resulting mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and then stirred for 20 min . The mixture was diluted with ether (30 mL) and saturated $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and treated with $10 \% \mathrm{KF}$ solution (40 mL). The resulting mixture was stirred vigorously for 1 h , and then the aqueous layer was separated and extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel chromatography (1:1 $\mathrm{Et}_{2} \mathrm{O}$:hexanes) which provided 41 ($626 \mathrm{mg}, 80 \%$ yield) as a clear colorless oil: $[\alpha]^{25_{D}}=+2.1^{\circ}\left(c=1.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.19$ $(\mathrm{m}, 5 \mathrm{H}), 5.73(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=17.2,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06(\mathrm{dd}, J=10.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 4 \mathrm{H}), 4.13(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J=9.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=6.2$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ (s, 3 H), 1.47 (s, 3 H), 1.33 (s, 3 H), 1.24 ($\mathrm{s}, 3 \mathrm{H}), 1.14$ (s, 3 H$), 1.14$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 138.98,134.58$, 128.54, 128.54, 127.91, 127.76, 127.76, 119.85, 109.18, 99.73, 99.45, $78.64,77.10,75.59,74.71,73.41,70.80,62.60,62.47,29.35,28.36,26.39$, $26.35,18.84,15.83$; IR (neat) 3495 (broad), 2995, 2970, 1490, 1450, 1380, 1365, 1220, 1070, 855, $735 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ calcd 465.2488, found 465.2440. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{8}$: $\mathrm{C}, 64.63$; H, 7.81. Found: C, 64.47; H, 7.82 .

Representative Procedure for Hydrolysis of the Mannosyl Auxiliary: (3 R,4R,5S)-5-Methylhex-1-ene-3,4,6-triol 3,4,6-Triacetate (10). A solution of $8(55 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was treated with 1 N $\mathrm{HCl}(1.5 \mathrm{~mL})$ and heated at $70^{\circ} \mathrm{C}$ for 48 h . The resulting solution was cooled to room temperature and neutralized with 1 N NaOH . The resulting mixture was concentrated repeatedly from $\mathrm{CH}_{3} \mathrm{CN}$ to remove water azeotropically. The resulting solid was triturated with MeOH (15 mL) and the filtrate concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and treated with $\mathrm{Ac}_{2} \mathrm{O}(0.25 \mathrm{~mL}, 2.6 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ $(0.40 \mathrm{~mL}, 2.9 \mathrm{mmol})$, and DMAP (ca .2 mg). The resulting mixture was stirred at room temperature for 8 h and then was diluted with EtOAc $(45 \mathrm{~mL})$ and extracted with saturated $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$. The organic extracts were dried over MgSO_{4} and concentrated in vacuo. Purification of the crude material by silica gel chromatography (4:1 hexanes:EtOAc) provided triacetate 10 ($20 \mathrm{mg}, 67 \%$ yield) as a clear oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+31.8^{\circ}\left(c=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.73$ (ddd, $J=17.2,10.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (ddd, $J=17.2,1.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=10.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (dd, $J=7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (A of $\mathrm{ABX}, J_{\mathrm{AB}}=11.2 \mathrm{~Hz}, J_{\mathrm{AX}}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86\left(\mathrm{~B}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=11.2 \mathrm{~Hz}, J_{\mathrm{BX}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.16(\mathrm{~m}$, $1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.90,170.21,169.86,132.16$, $119.99,74.21,72.78,65.55,33.18,20.96,20.80,20.69,11.02 ;$ IR $\left(\mathrm{CHCl}_{3}\right)$ 3031, 2975, 1737, 1470, 1426, 1371, 1251, 1025, 988, 947, 909; LRMS m / e (relative intensity) 213 (98), 173 (24), 153 (15), 131 (93), 113 (64), 84 (24), 71 (100); HRMS for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd 273.1338, found 273.1388 .

Acknowledgment. This research was supported by a grant from the National Institute of General Medical Sciences (GM 38907). M.S.V. also thanks Amoco for a Graduate Fellowship (199192).

Supplementary Material Available: Details of the stereostructure assignments for $9,21-24,27,29$, and 41 (11 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: - Abstract published in Advance ACS Abstracts, August 15, 1994.
 (1) (a) Taken in part from the 1992 Ph.D. Thesis of M.S.V., Indiana University. (b) Recipient of the 1991-92 Amoco Fellowship at Indiana University.
 (2) (a) Trends in Synthetic Carbohydrate Chemistry; Horton, D., Hawkins, L. D., McGarvey, G. J., Eds.; ACS Symposium Series 386; Washington, DC, 1989. (b) Danishefsky, S. J.; DeNinno, M. P. Angew. Chem., Int. Ed. Engl. 1987, 26, 15. (c) McGarvey, G. J.; Kimura, M.; Oh, T.; Williams, J. M. J. Carbohydr. Chem. 1984, 3, 125. (d) Zamojski, A.; Banaszek, A.; Grynkiewicz, C. Adv. Carbohydr. Chem. Biochem. 1982, 40, 400.
 (3) Reviews of reactions of allylorganometallics and aldehydes, see: (a) Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1982, 21, 555. (b) Yamamoto, Y.; Maruyama, K. Heterocycles 1982, 18, 357. (c) Roush, W. R. In Comprehensive Organic Synthesis; Heathcock, C. H., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, p 1. (d) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.

[^1]: (5) Chiral (γ-alkoxyallyl)metal reagents useful for the enantioselective synthesis of syn diols: (a) Wuts, P. G. M.; Bigelow,S.S. J. Chem. Soc., Chem. Commun. 1984, 736. (b) Brown, H. C.; Jadhav, K. P.; Bhat, K. S. J. Am. Chem. Soc. 1988, 110, 1535. (c) Marshall, J. A.; Gung, W. Y. Tetrahedron Lett. 1989, 30, 2183. (d) Marshall, J. A.; Luke, G. P. J. Org. Chem. 1991, 56, 483. (e) Yamamoto, Y.; Kobayashi, K.; Okano, H.; Kadota, I. Ibid. 1992, 57, 7003.
 (6) (a) Roush, W. R.; Grover, P. T.; Lin, X.-F. Tetrahedron Lett. 1990, 31, 7563. (b) Roush, W. R.; Grover, P. T. Tetrahedron 1992, 48, 1981. (c) Barrett, A. G. M.; Malecha, J. W. J. Org. Chem. 1991, 56, 5243.
 (7) For a highly enantioselective synthesis of anti-glycolates via the aldol reaction: Mukaiyama, T.; Uchiro, H.; Shiina, I.; Kobayashi, S. Chem. Lett. 1990, 1019.
 (8) Review of carbohydrates as chiral auxiliaries: Kunz, H.; Rück, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 336.
 (9) Gigg, R.; Payne, S.; Conant, R. Carbohydr. Res. 1985, 141, 9.
 (10) (a) Deslongchamps, P.Stereoelectronic Effects in Organic Chemistry; Pergamon Press: Oxford, 1983; pp 4-29. (b) Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer-Verlag: New York, 1983. (c) Lemieux, R. L. Pure Appl. Chem. 1971, 25, 527.
 (11) (a) Goekjian, P. G.; Wu, T.-C.; Kishi, Y. J. Org. Chem. 1991, 56, 6412. (b) Wang, Y.; Goekjian, P. G.; Rychman, D. M.; Miller, W. H.; Babirad, S. A.; Kishi, Y. Ibid. 1992, 57, 482. (c) Haneda, T.; Goekjian, P. G.; Kim, S. H.; Kishi, Y. Ibid. 1992, 57, 490.

[^2]: (12) (a) Gupta, R. C.; Slawin, A. M. Z.; Stoodley, R. J.; Williams, D. J. Chem. Commun. 1986, 1116. (b) Gupta, R. C.; Larsen, D. S.; Stoodley, R. J.; Slawin, A. M. Z.; Williams, D. J. J. Chem. Soc., Perkin Trans. 1 1989, 739. (c) Larsen, D. S.; Stoodley, R. J. Ibid. 1989, 1841. (d) Edwards, W. D.; Gupta, R. C.; Raynor, C. M.; Stoodley, R. J. Ibid. 1991, 1913. (e) Other studies involving glycosylated dienyl and enol ethers: David, S.; Lubineau, A.; Vatele, J.-M. J. Chem. Soc., Chem. Commun. 1975, 701. (f) David, S.; Eustache, J.; Lubineau, A. J. Chem. Soc., Perkin Trans. 1 1979, 1795 and references cited therein. (g) Lubineau, A.; Queneau, Y. J. Org. Chem. 1987, 52, 1001. (h) Lubineau, A.; Auge, J.; Bellanger, N.; Caillebourdin, S. Tetrahedron Lett. 1990, 31, 4147. (i) Choudhury, A.; Franck, R. W.; Gupta, R. B. Ibid. 1989, 30, 4921. (j) Llera, J. M.; Lopez, J. C.; Fraser-Reid, B. J. Org. Chem. 1990, 55, 2997. (k) Borer, B. C.; Balogh, D. W. Tetrahedron Lett. 1991, 32, 1039. (1) The chemistry reported in ref 5 a has been reinterpreted in terms of the exo anomeric effect (see ref 3c). The diastereoselectivity relative to the THP substituent in the following paper may also be related: Metternich, R.; Hoffmann, R. W. Tetrahedron Lett. 1984, 25, 4095.
 (13) Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl. 1985, 24, 1.
 (14) Keck, G. E.; Abbott, D. E. Tetrahedron Lett. 1984, 25, 1883.

[^3]: (15) (a) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199. (b) Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 1977, I, 61.
 (16) Reetz, M. T.; Hüllmann, M.; Massa, W.; Berger, S.; Rademacher, P.; Heymanns, P. J. Am. Chem. Soc. 1986, 108, 2405.
 (17) Yamamoto, Y.; Yatagai, H.; Naruta, Y.; Maruyama, K. J. Am. Chem. Soc. 1980, 102, 7107.
 (18) Seebach, D.; Golinski, J. Helv. Chim. Acta 1981, 64, 1413.
 (19) (a) Denmark, S. E.; Weber, E. J. J. Am. Chem. Soc. 1984, 106, 7970. (b) Denmark, S. E.; Weber, E. J. Helv. Chim. Acta 1983, 66, 1655. (c) Denmark, S. E.; Weber, E. J.; Wilson, T. M.; Wilson, T. M. Tetrahedron 1989, 45, 1053. (d) Mikami, K.; Kawamoto, K.; Loh, T.-P.; Nakai, T. J. Chem. Soc., Chem. Commun. 1990, 1161. (e) Marshall, J. A.; Wang, X. J. Org. Chem. 1991, 56, 3211 . (f) Marshall, J. A.; Wang, X. Ibid. 1992, 57 , 1242. (g) Gung, B. W.; Smith, D. T.; Wolf, M. A. Tetrahedron 1992, 48, 5455.
 (20) Heathhcock, C. H.; Flippin, L. A. J. Am. Chem. Soc. 1983, 105, 1667.
 (21) (a) Ireland, R. E.; Thaisrivongs, S.; Dussault, P. H. J. Am. Chem. Soc. 1988, I10, 5768. (b) Mislow, K.; O'Brien, R. E.; Schaefer, H. Ibid. 1962, 84, 1940. (c) Massad, S. K.; Hawkins, L. D.; Baker, D. C. J. Org. Chem. 1988, 48, 5180 .

[^4]: (25) (a) Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron Lett. 1983, 24,

[^5]: (26) Review of chelate-controlled carbonyl addition reactions: Reetz, M. Angew. Chem., Int. Ed. Engl. 1984, 23, 556.

[^6]: (27) Katsuki, T.; Lee, A. W. M.; Ma, P.: Martin, V. S.; Masamune, S.; Sharpless, K. B.; Tuddenham, D.; Walker, F. J. J. Org. Chem. 1982, 47, 1373.
 (28) Payne, G. B. J. Org. Chem. 1962, 27, 3819.

[^7]: (30) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

[^8]: (31) Best results were obtained when freshly distilled $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was used.
 (32) $\mathrm{KOt}-\mathrm{Bu}$ in MeOH was added to neutralize with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ before the reactions were worked up. If this step was omitted, isolated yields of homoallyl ethers were often much lower than reported in the text, and products resulting from hydrolysis of one or both of the acetonide units of the mannosyl auxiliary were obtained.

